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Abstract 

 

Due to the estimated massive quantities of natural methane hydrates, they represent one of the 

largest sources of future alternative energy on Earth.  Methane hydrates have been found in the 

shallow sub-seafloor of the Northern Gulf of Mexico where the water depth is in excess of ~900 

m.  Mississippi Canyon Block 118 has been chosen by the Gulf of Mexico Hydrates Research 

Consortium to be the site of a multi-sensor, multi-discipline sea-floor observatory for gas 

hydrate research. First evidence for gas hydrates at MC 118 was observed at Woolsey Mound. 

Subsurface evidence for gas hydrates has subsequently been substantiated by 3D seismic 

reflection data and piston coring. It is estimated that methane trapped within gas hydrates 

worldwide may exceed 1016 kg, one of the largest sources of hydrocarbons to date, and here 

they present an opportunity for exploitation via harvesting for energy production. The analysis 

of the 3-D seismic reflection data and integration with industry well logs reveals the subsurface 

structural and stratigraphic architecture of a thermogenic hydrate system in the Mississippi 

Canyon area (MC-118) of the Gulf of Mexico. Like many hydrocarbon systems in the Gulf of 

Mexico, Woolsey Mound is dominated by the presence and sporadic movement of 

allochthonous salt within the sedimentary section. Exploration-scale 3-D seismic imaging shows 

a network of faults connecting the mound to a salt diapir and an extended area of high P-wave 

velocity just beneath the sea floor.  Gas hydrates exhibit clear seismic properties such as the 

bottom simulating reflector (BSR), relatively high P- and S- wave velocities, seismic blanking, and 
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amplitude vs. offset (AVO) effects. These effects occur mainly due to the presence of free gas 

that is usually trapped by the more rigid overlying hydrate formations. In order to substantiate 

the presence of hydrates in the shallow subsurface at Woolsey Mound, an AVO analysis based 

on the variation of the P-wave reflection coefficient with the angle of incidence was performed 

on a seismic transect across the mound. The AVO analysis targeted a shallow (~150 m below the 

seafloor) “bright spot” that is interpreted to mark the base of the gas hydrate stability field. The 

AVO analysis shows results consistent with evidence for free gas underlying a medium with 

higher P-wave and S-wave velocities such as gas hydrates. This shallow, high-velocity zone, pore-

fluid analyses revealing microbial processes, thermobaric and AVO analysis provide convincing 

evidence for the existence of gas hydrates at MC 118. 
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I. Introduction 
 

Clathrate hydrates are crystalline hydrogen compounds in which guest atoms or 

molecules are physically trapped within the three dimensional structure.  These 

compounds are known as gas hydrates when the enclosed molecules are gases (Chatti 

et al 2005).  Light gases such as methane and ethane are extremely common within 

these compounds, as their molecular structures fit well with that of the icy barrier.  The 

water and gas molecules are so closely intertwined that their interactions actually help 

to stabilize the structure.  A significant fraction of the icy cavities must be occupied with 

gas molecules to ensure stability (Buffett, 2000). 

Hydrates possess a profound ability to store large volumes of gas.  This defining 

characteristic leads to the primary interest in gas hydrates, and unprecedented volumes 

of hydrate are expected to exist in many locations across the planet.  It is estimated that 

global stores of methane trapped within marine hydrate may exceed 2 x 1016 kg, one of 

the largest sources of hydrocarbon on Earth (Buffet 2000).  This capacity for storage and 

stability can also be used in marine carbon dioxide sequestration and natural gas 

storage and transportation (Chatti et al., 2005). 

However, interest in clathrate hydrates also stems from the dangers they present to 

petroleum exploration and recovery programs, primarily through drilling hazards and 

pipeline plugs.  Hydrate can act as a lubricating layer within sediments and lead to 

slumping on the continental slope and can dissociate quickly when drilled, leading to 

mud volcanoes and explosions (Diaconescu and Knapp 2002).  Another primary concern 

is the radiative properties of methane, a powerful greenhouse gas, in the atmosphere.  

There has not yet been a clear relation between the release of large volumes of 

methane trapped in hydrates and global climate change, but the concept is simple to 

understand.  Small changes in sea temperature or pressure and slumping in the 

continental margins are favorable situations for the dissociation of the gas hydrates 

(Buffett 2000). 

Thus, it becomes necessary to find effective and relatively inexpensive methods to 

locate gas hydrates in the Earth’s continental margins.  An analysis of the variation in 

the amplitudes of seismic waves with a change in the angle of offset, or amplitude 
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versus offset (AVO) analysis, is an example of a method which accomplishes this.  An 

AVO analysis provides an accurate method to locate gas hydrates without the need to 

drill.  AVO has been used by the petroleum industry in the last two decades in order to 

determine rock’s fluid content, porosity, density or seismic velocity. AVO refers to the 

dependency of the seismic amplitude with the distance between the source and 

receiver (the offset) and is based on the relationship between the reflection coefficient 

and the angle of incidence based on the Zoeppritz equations. Since gas hydrates can act 

as seals to trap hydrocarbon gases in marine sediments, the AVO analysis has also been 

used as an indicator of the base of the gas hydrate stability zone. Therefore, in this 

paper, we will show that the bottom of the hydrate stability zone (HSZ) within 

Mississippi Canyon lease block 118 (MC-118) at Woolsey Mound can be located with the 

use of 2-D seismic reflection data and an AVO analysis of interpreted “bright” reflectors 

in the shallow sub-seafloor. 

II. Geologic Setting 
 

Woolsey Mound, a carbonate/hydrate mound approximately one kilometer in diameter, 

is located in the southern portion of Mississippi Canyon lease block 118 (MC-118).  MC-

118 is located offshore approximately 150 km south of Pascagoula (Ms) and 100 km east 

of the Mississippi Canyon, ~890 m below sea level (Figure 1).  It sits on the eastern flank 

of the main Mississippi Canyon, in a gently seaward dipping portion of the continental 

slope.  On the Gulf’s continental slope, faults and fractures radiating from salt bodies 

produce natural conduits that facilitate migration of hydrocarbon fluids from deeper oil 

reservoirs into the Hydrate Stability Zone (HSZ) (Simonetti et al., in press).  The supply of 

hydrocarbons (natural gas and petroleum) to the seafloor supports active biological 

seep communities and microbial chemolithotrophy in the vicinity of active gas-fluid 

seepage (Lapham et al., 2008).  Visible outcrops of hydrates, faulted carbonates and 

pockmark features, cover approximately 1 km2 of the seafloor.  The seaward slope 

across the area ranges from 3o to 4o, but steeper 10o-12o are present locally across the 

pockmark (Macelloni et al., 2012). 

Like many hydrocarbon systems in the Gulf of Mexico, MC-118 is dominated by the 

presence and sporadic movement of allocthonous salt within the sedimentary section.  

The northwestern flank of the salt body appears to reach depths suitable for 

hydrocarbon maturation, while the steeper flanks provide migration pathways for deep 

basin fluid flow.  A radiating crestal fault structure above the salt creates delivery 

systems to the shallower subsurface as well as venting at the seafloor (Figure 2).  
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Stratigraphic relationships indicate that the most recent period of salt movement was 

probably during the Late Pliocene.  Subsequently, the Pleistocene time was 

characterized by relatively uniform, quiescent sedimentation over the mound site.  Such 

relationships suggest that the gas hydrate system at MC-118 is likely a geologically 

young feature (Knapp et al., 2010).  

III. Hydrate Stability 
 

Theoretically-determined phase equilibria can be used to calculate temperatures and 

pressures at which hydrates are stable for a given gas composition, and clearly 

distinguish natural gas hydrates from water ice (Sloan 1998). Phase equilibrium 

diagrams developed to calculate the stability conditions of gas hydrates given certain 

conditions of temperature, pressure, and gas composition are defined by requiring the 

clathrate phase to coexist with both the liquid and vapor phases in a three-phase 

equilibrium as shown in Figure 3 (Buffett, 2000; Sloan., 1998; Trehu et al., 2006). This 

state of equilibrium occurs at a certain temperature which is solely a function of 

pressure P (red curve in Figure 3). A hydrostatic pore-pressure gradient of 0.1 atm/m 

was assumed for calculating the depth scale. In such a diagram, gas hydrate is stable to 

the left side of the red curve. Since gas hydrates are stable at low temperatures and 

high pressures, their formation is limited to either polar regions under permafrost or 

cooler marine continental slopes where water depths typically exceed ~400-500 m (e.g. 

Diaconescu et al., 2001). Pure methane hydrates are less stable than hydrates 

composed of methane plus heavier hydrocarbon gases such as ethane, propane, butane, 

etc. Furthermore, inclusion of CO2 or H2S would increase the hydrate stability whereas 

salinity and N2 would make the hydrates less stable. In seabottom sediments, the upper 

limit of the hydrate stability zone (GHSZ) is marked by the intersection of the hydrate 

stability curve with the seafloor isotherm. The bottom of the GHSZ is marked by the 

intersection of the hydrate stability curve with the geothermal gradient (Fig. 3b). 

Therefore, knowledge of the temperature and pressure fields together with the 

hydrocarbon gas composition and ocean water salinity are critical parameters in 

estimating and predicting the gas hydrate formation conditions.  

The hydrate stability field at Woolsey Mound was calculated based on the thermogenic 

gas composition sampled at the site (Lapham et al., 2008) and a geothermal gradient of 

~17°C/km derived from the ARCO-1 and associated ARCO-2 sidetrack wells (Fig. 4b). Two 

industry wells (ARCO-1 and ARCO-2) were drilled in 1989. These wells tested the interval 

down to 1864 and 2762 mbsf respectively, and are located ~580 m NW of the hydrate-
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carbonate mound. Preliminary analysis of the temperature data from the wells predicts 

a very thick (~1.2 km) hydrate stability zone at the well locality (Fig. 4a). However, the 

geophysical signature above the hydrate mound suggests a much thinner and shallower 

hydrate stability field, consistent with the inferred higher temperatures and salinities 

expected above the SW salt body. Based on the 3D seismic volume, we interpret shallow 

bright spots that we assume to be Bottom Simulator Reflectors (BSR) to mark the base 

of the gas hydrate stability field, at ~ 150 mbsf. Thermobaric modeling of the stability 

field from this constraint suggests much higher geothermal gradients on the mound (Fig. 

4b).  

Of the different equations developed for gas hydrate phase-equilibria, we employed the 

three-phase equilibrium analysis based on a statistical thermodynamic determination of 

the distribution of the guest particles in the hydrate structure (Van der Waals and 

Platteeuw, 1959; Sloan, 1990). This approach provides a comprehensive means of 

correlation and prediction of all the hydrate equilibrium regions of the phase diagram, 

without separate prediction schemes for two-phase regions, three-phase regions, etc. 

(Sloan, 1998). The intersection of the gas hydrate stability curve (in red in Fig. 4) with 

the seafloor isotherm of 4.85oC denotes the minimum water depth at which gas 

hydrates are stable for a given hydrocarbon gas composition (Fig. 4b). The depth at 

which the geothermal gradient intersects the gas hydrate stability curve marks the 

predicted base of the gas hydrate stability field (Kvenvolden et al., 1981; Kvenvolden, 

1993a, b). Based on this thermobaric modeling, the geothermal gradient derived to 

match the shallow bright spots is ~115°C/km, much higher than that derived from the 

temperature measurements in the ARCO well. This significant temperature variation in 

the sediments between the hydrate mound and the outside area may be due to the high 

flux of thermogenic gas migrating upwards in the vicinity of the shallow faults. 

Therefore, a better knowledge of the temperature and pressure conditions is critical for 

an accurate prediction of the GHSZ at the Woolsey Mound. 

IV. The Bottom Simulating Reflector (BSR) 
 

The seismic reflection technique is currently recognized as the primary tool used for the 

inference of natural gas hydrates within marine sediments.  The preliminary feature 

indicative of the presence of gas hydrates is a strong bottom simulating reflector (BSR), 

a negative polarity reflector which mimics the topography of the seafloor (Diaconescu et 

al, 2001;  Figure 5).  Satyavani et al. (2003) have proposed two methods for the 

formation of the BSR.  In the first, the presence of gas hydrates within the sediments 
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causes a sharp increase in the P-wave velocity, generating a strong reflector associated 

with the top of the HSZ.  In the second, the strong reflector is caused by hydrates 

overlying gas-saturated sediments.  In this situation, the high impedance contrast 

results from the interface between the overlying sediments containing hydrate and the 

underlying gas-saturated sediments having lower velocity, slightly lower density and, 

consequently, signals the bottom of the HSZ.  The BSR typically follows the subsurface 

isotherm approximately parallel to the sea-floor and cuts across layered sediments.  

Therefore, the BSR is a phase boundary or a thermobaric boundary between gas hydrate 

charged sediments above and free gas charged sediments below it.  However, a 

lithologic boundary with a distinct impedance contrast can also create an appearance 

similar to the BSR, thus it becomes important to use precaution when interpreting such 

sections and the need to use other methods to locate the HSZ are required. 

V. Amplitude Variation with Offset 
 

The variation of reflection and transmission coefficients with the incident angle is 

referred to as offset-dependent reflectivity and is the basis for seismic AVO analysis 

(Castagna, 1993).  The variations are shown with the Knott (1899) and Zoeppritz (1919) 

equations, which are unmanageable and complex in form.  Shuey (1985) presented an 

approximation of the equations which greatly simplifies AVO interpretation with: 

   (  )     (     
  

(    ) 
)        
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The first term is the normal incidence reflection coefficient, the second term 

predominates at intermediate angles, and the third term is dominant as the critical 
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angle is approached.  Thus, for restricted angles of incidence, equation (1) is linear 

in       . 

   (  )         
          

 (2) 

Here we use “A” to represent the normal incidence reflection coefficient   , or the 

“AVO intercept”.  B is called the “AVO gradient” and is shown by Wiggens et al. (1983) to 

be: 

         .        

 (3) 

AVO analysis for nonbright-spot reflectors is facilitated by cross-plotting extracted 

seismic parameters of AVO intercept (A) and gradient (B).  Focused cross-plots for these 

two AVO parameters create charts on the x and y coordinate plane, where A is the 

horizontal axis and B is the vertical axis.  A typical AVO response will plot in one of three 

quadrants, each representing a particular arrangement within the subsurface: 

1) If the reflection coefficient increases with offset across the interface, the 

majority of points in the cross-plot should appear in quadrant IV; 

2) If the reflection coefficient decreases with offset across the interface, and the 

overlying medium is shale, then the majority of the points will appear in 

quadrant III; and 

3) If the reflection coefficient decreases with offset across the interface, and the 

overlying medium is hydrate, then the majority of the points will appear in 

quadrant II. 

The distinguishing factor between points 2 and 3 is shear wave velocity, Vs, which is 

lower in shales than in hydrates. 

Furthermore, in the absence of hydrocarbon bearing strata, this cross-plot often forms a 

well-defined “background trend.” (Figure 6)  Thus, deviation from this trend can be 

viewed as an indicator of the presence of hydrocarbons (Castagna et al., 1998). 

Seismic reflections from gas bearing sands exhibit a wide range of amplitude versus 

offset (AVO) characteristics (Figure 7).  These variations have classically been separated 

into three classes, which are based most strongly on two factors:  1) the normal 

incidence reflection coefficient R0 and 2) the contrast in Poisson’s ratio at the reflector: 

 Class I – High-impedance sands, 
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 Class II – Near-zero impedance contrast sands, and 

 Class III – Low-impedance sands (Rutherford and Williams, 1989). 

Class I gas sands display a reflection coefficient which decreases with increasing offset, 

Class II gas sands display a reflection coefficient which may increase or decrease with 

offset and may reverse polarity, and Class III gas sands tend to have an increased 

reflection coefficient with offset, which are illustrated in figure 7. 

More recently, Castagna et al. (1998) hypothesized the existence of a fourth type, Class 

IV, which has an impedance contrast lower than that of the overlying unit, but has a 

reflection coefficient that decreases in magnitude with offset.  Class IV gas sands 

typically occur when porous sand is overlain by a high-velocity unit, such as a hard shale, 

siltstone, tight sand, or gas hydrate and can be used as evidence for the bottom of the 

hydrate stability zone, where free gas collects in the porous sediments underlying gas 

hydrate. 

VI. Methods 
 

In order to constrain the location of BSR at Woolsey Mound, we have processed and 

interpreted seismic reflection data from MC-118 (provided by TGS-Nopec Geophysical 

Company) using ProMAX software in order to locate the BSR, salt diapir(s), fault 

structures and bright, shallow reflectors associated with hydrate presence.   

Data was collected using four streamers at a length of 7200 m, with a line length of ~10 

km.  This line crosses directly over the ~1.5 km2 Woolsey Mound (Figure 2).  The 

shotpoint interval is 31.25 m with a receiver spacing of 25 m and a record length of 

12.288 s.  For the purposes of this research, only the top 3 s of the seismic data are 

used.  Data processing steps include bandpass filtering, velocity analysis, normal 

moveout correction, CDP stacking and a slight static correction.  The AVO analysis 

requires the preservation of the true reflection amplitudes and, therefore, uses pre-

stacked data.  Acquisition and processing parameters used in this study are shown in 

Tables 1 and 2, respectively. 

Shallow bright reflectors in the resulting interpreted seismic image (Figure 5) have been 

targeted for the AVO analysis.  Increasing or decreasing amplitude with offset within the 

CDP gathers has been shown by Castagna et al. (1998) and Satyavani et al. (2003) to be 

an indicator of hydrocarbon presence.
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VII. Discussion 
 

Gas hydrates exist within MC-118 as outcrops on the sea-floor and in the shallow sub-

seafloor as seen in piston cores acquired by the University of Mississippi (Simonetti et 

al., in press).  However, in order to gain a more definitive location for the boundaries of 

the hydrate stability zone, AVO analysis was conducted using seismic reflection data 

provided by TGS Nopec Geophysical Company and software provided by Hampson-

Russell. 

The faults illustrated in the section are conduits along which hydrocarbons flow into the 

shallow sub-surface, where they enter into the hydrate stability zone.  Thus, AVO 

analysis was performed along shallow reflectors above and to either side of the salt 

dome.  Conclusive results indicating the bottom of the HSZ were found along the first 

bright reflector, ~150 ms beneath the sea-floor and highlighted blue in figure 5. 

Along this targeted shallow reflector, an AVO analysis using small groups of common 

depth points (CDPs) indicates that the reflector is coincident with a sharp decrease in 

the P-wave velocity across the interface (Figure 8).  Furthermore, it is shown that the 

overlying high velocity interface also presents a high shear velocity (Vs) by plotting in 

quadrant II of the AVO cross-plots.  

Directly above the salt dome, between approximately CDPs 400-440, the AVO response 

curve indicates a decrease in the impedance contrast along the reflector at ~150 ms, but 

has a reflection coefficient that decreases in magnitude with offset.  This pattern is 

repeated both to the North and South of the salt dome along the line, between 

approximately CDPs 320-375 and CDPs 450-515 (Figure 8).  It is important to note that in 

each of the cross-plots shown in figure 8, many of the data points plot in quadrant II, 

below the background trend line, a strong indicator for the presence of free gas within 

the underlying sediments.  We interpret this pattern as the hydrate of Woolsey Mound 

acting as a seal for free gas moving upward through the fault system. 

Figure 10 shows an AVO response expected of typical ocean floor sediments, with a 

velocity that increases with depth.  This control example shows the cross-plot and curve 
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between CDPs 850-875, ~5 km North of Woolsey Mound, where no interpreted faults 

are thought to be supplying hydrocarbon fluids to the HSZ. 

VIII. Conclusions 
 

The seismic acquisition parameters and processing steps have yielded the interpreted 

Line A shown in figure 5, which illustrates several shallow bright reflectors, the salt 

diapir, normal faulting and BSR from AVO analysis.  It is important to note that very little 

processing is used during the AVO analysis, in order to preserve the true reflection 

amplitudes and the “blanking” effects of hydrate. 

The ARCO wells have shown a geothermal gradient of 17oC/km at ~580 m NW of 

Woolsey Mound.  This gradient would produce a HSZ down to ~1200 m under normal 

conditions, but the extreme proximity of the salt diapir vastly increases subsurface 

salinity and temperature, destabilizing the hydrate and shallowing the HSZ.  

Furthermore, we have shown that the BSR at ~150 mbsf exhibits AVO signals associated 

with the bottom of the HSZ.  Between CDPs 320 and 515, the analysis shows a sharp 

decrease in P-wave velocity as well as a decreasing reflection coefficient with an 

increasing angle of offset across the blue reflector above the salt diapir.  These findings 

indicate a shallow HSZ and a relatively higher geothermal gradient through Woolsey 

Mound. 

In conclusion, it is demonstrated that location of the BSR associated with the bottom of 

the HSZ can be located at Woolsey Mound of MC-118 using an AVO analysis method.  At 

Woolsey Mound, hydrocarbon fluids move up into the shallow sub-surface and into the 

HSZ, where pressure and temperature conditions allow for the formation of methane 

hydrate.  At the bottom, this hydrate acts as a seal for free gas.  The lower bounds of the 

HSZ, based on the AVO readings, are shown in figure 8.  A major strength of this 

research lies in that the AVO analysis was completed without the use of well log data, 

thereby eliminating the need for expensive drilling to locate possible zones of hydrate 

accumulation. 
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IX. Figures 
 

 

Figure 1:  Location of MC-118 within the Gulf of Mexico.  It lies on the eastern flank of the Mississippi Canyon 

approximately 890 m below sea level (after McGee et al., 2009).
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Figure 2:  Location map of two survey lines through MC-118.  For this research, Line A has been processed and 

interpreted in Figures 3 and 4.  Green to yellow to red colors represents two-way travel time (TWTT) contours of the 

mapped shallow “bright spots” inferred as bottom simulating reflectors (BSRs).  
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Figure 3:  (A) Methane hydrate stability curve as compared to water ice (salinity is considered negligible). Methane 

hydrate becomes more stable if gas contains CO2, H2S, or higher-order hydrocarbons, and less stable if pore-water 

salinity increases or if the gas contains N2. (B) Gas hydrate phase equilibrium diagram showing hydrate stability in the 

ocean. Red curve shows the gas hydrate stability boundary. The gas hydrate stability zone (GHSZ) is marked by the 

intersection of the hydrate stability boundary with the seafloor isotherm at the top, and the intersection with the 

geothermal gradient, at the bottom. The thickness of the GHSZ below the seafloor increases as water depth increases 

given that the geothermal gradient stays constant (after Trehu et al., 2006).  

  

A B 
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Figure 4:  (A) Predicted base (~1200 mbsf) of the GHSZ (gas hydrate stability zone) in the vicinity of the MC-118 ARCO-

1,2 wells based on temperature data from the wells using CSMHYD model (after Lapham, pers. Comm..). (B) Phase 

equilibrium diagram for the gas hydrate system at MC-118 taking into account seafloor depth of ~890 m and seafloor 

temperature of 4.85°C. Assumptions include normal seawater salinities (3.5% salts), and thermogenic gas composition 

(70% methane, 8% ethane, 16% propane, and 6% n-butane, reported in Sassen et al., 2006). The shallow bright spots 

(~150 mbsf) on the mound imply a much shallower GHSZ above the SW salt dome (from lighter to darker red). Depth 

scale assumes a pore-water hydrostatic pressure gradient of 0.1 atm/m.  

  

A 

B 



www.manaraa.com

14 
 

 



www.manaraa.com

15 
 

Figure 5:  Processed, interpreted two-way travel time (TWTT) seismic section at MC-118 showing seafloor in yellow, 

allocthonous salt in white, faults in red and bright reflectors in green.  The BSR associated with the bottom of the 

hydrate stability zone (HSZ) is shown in blue. 

 

Figure 6:  Left – the movement of AVO reflection coefficients from the background trend as gas replaces brine within a 

sandy layer below shale.  Right – AVO intercept (A) vs. gradient (B) crossplot showing four possible quadrants.  Brine-

sands tend to fall along the background trend line, while Class I-IV gas-sands fall in their designated areas. 

 

Figure 7:  For Class I, II, and III gas sands, reflection coefficients tend to decrease with an increasing angle of offset.  

This differs from Class IV, which displays an increasing reflection coefficient with offset, but a decreasing amplitude 

magnitude. 

I 

II 

III 

IV 
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along the reflector marked “BSR” in figure 5.  Plot A shows CDPs 350-375, south of the salt dome.  Plots B and C show 

CDPs 405-420 and 440-452, directly above the salt dome.  Plot D shows CDPs 460-500, to the north of the salt dome. 

 

Figure 9:  Cross-plots and their associated gradient curves.  Each curve shows the Class IV AVO response of decreasing 

absolute value of the amplitude with increased offset, indicative of free gas beneath a high velocity layer, in this case, 
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gas hydrate.  Plots A, B and C each represent positions to the South, directly above and North of the salt dome, 

respectively, and correspond to their curves to the right. 

 

Figure 10:  The AVO cross-plot for CDPs 850-875 (top) shows a normal AVO response at an interface separating a 

lower velocity overlying medium from a higher velocity underlying medium in the absence of hydrocarbons.  These 

CDPs are ~5 km North of Woolsey Mound, where no interpreted faults are thought to be supplying hydrocarbon fluids 

to the shallow subsurface.  The corresponding AVO curve (bottom) shows the Class I response expected from this 

positive reflection coefficient interface. 
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X. Tables 
 

Streamers 4 per line 

Airgun Source 4180 in
3
 

Line Length ~10 km 

Shotpoint interval 31.25 m 

Record length 12.288 s 

Receiver spacing 25 m 

Streamer length 7200 m 

Sample rate 2 ms (desampled to 4 ms) 

Channels 288 

Table 1:  Acquisition parameters used by TGS-Nopec Geophysical Company. 

 

Geometry 

Spherical divergence correction 

Spiking/predictive deconvolution 

Bandpass filter (4-8-60-70 Hz) 

F-X decon (shot domain) 

Static correction (-128 ms) 

Velocity Analysis 

Normal Moveout Correction 

F-K filter (multiple suppression) 

CDP median stack 

Coherency filter 

Finite Difference migration 

Table 2:  Example processing flow used to optimize the appearance of the hydrate seismic characteristics. 
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